Division of the Humanities and Social Sciences California Institute of Technology Pasadena, California 91125 Modeling the Change of Paradigm: Non-bayesian Reactions to Unexpected News

نویسنده

  • Pietro Ortoleva
چکیده

Despite its normative appeal and widespread use, Bayes’ rule has two well-known limitations: first, it does not predict how agents should react to an information to which they assigned probability zero; second, a sizable empirical evidence documents how agents systematically deviate from its prescriptions by overreacting to information to which they assigned a positive but small probability. By replacing Dynamic Consistency with a novel axiom, Dynamic Coherence, we characterize an alternative updating rule that is not subject to these limitations, but at the same time coincides with Bayes’ rule for “normal” events. In particular, we model an agent with a utility function over consequences, a prior over priors ρ, and a threshold. In the first period she chooses the prior that maximizes the prior over priors ρ a’ la maximum likelihood. As new information is revealed: if the chosen prior assigns to this information a probability above the threshold, she follows Bayes’ rule and updates it. Otherwise, she goes back to her prior over priors ρ, updates it using Bayes’ rule, and then chooses the new prior that maximizes the updated ρ. We also extend our analysis to the case of ambiguity aversion. JEL classification numbers: D81, C61

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nber Working Paper Series Experimenting with Measurement Error: Techniques with Applications to the Caltech Cohort Study

Measurement error is ubiquitous in experimental work. It leads to imperfect statistical controls, attenuated estimated effects of elicited behaviors, and biased correlations between characteristics. We develop simple statistical techniques for dealing with experimental measurement error. These techniques are applied to data from the Caltech Cohort Study, which conducts repeated incentivized sur...

متن کامل

Op-scan120058 341..350

Peter Sokol-Hessner, Colin F. Camerer, and Elizabeth A. Phelps Division of the Humanities and Social Sciences (HSS), California Institute of Technology, Division of the Humanities and Social Sciences (HSS) and Computational and Neural Systems (CNS), California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA, and Department of Psychology, New York University, 6 Washing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010